Math 8, Summer 2012 Exam 1

	Short Ans.	
	1	
	2	
Name	3	
Perm No	Total	

Directions:

- 1. Each problem is graded out of 4 points.
- 2. Each short answer question is worth 1 point.
- 3. You're only allowed a writing instrument and your wits.
- 4. Proofs should be clean, to the point, and written in proper English sentences.

Short Answer

1. Given sets A and B, give a precise definition of $A \subseteq B$.

2. Let $f: A \to B$ be a function and $S \subseteq B$. Give a precise definition of $f^{-1}(S)$.

3. A sequence of continuous functions $f_1, f_2, f_3 \ldots$, each mapping from [0, 1] into \mathbb{R} , is said to converge uniformly if and only if:

For every $\epsilon > 0$ there exists $N \in \mathbb{N}$ so that for all integers $n, m \ge N$ and $x \in [0, 1]$ we have $|f_n(x) - f_m(x)| < \epsilon$.

Give a precise statement of what it means for such a sequence <u>not</u> to converge uniformly.

4. Precisely define what it means for the function $f: A \to B$ to be surjective.

5. Given a collection of sets $\{A_i : i \in I\}$, precisely define $\bigcup_{i \in I} A_i$.

- 6. Which of these is not bijective?
 - (a) The identity map $\mathbb{Z} \to \mathbb{Z}$
 - (b) A 90° rotation of \mathbb{R}^2 about the origin
 - (c) A translation of \mathbb{R}^3 by 3 units along an axis
 - (d) The inclusion map $\mathbb{N} \hookrightarrow \mathbb{Z}$
 - (e) None of the above

7. Given sets A and B, precisely define $A \times B$.

8. Give a precise definition of what it means for a real number x to be rational.

Problems

1. Let a and b be integers. Prove that a + b is even if and only if $a^2 + b^2$ is even. Hint: There is a nice proof using $(a + b)^2$. 2. Let A and B be sets with $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$. Prove that either $A \subseteq B$ or $B \subseteq A$.

3. Suppose that $f: A \to B$ is an injective function and $S \subseteq A$. Prove that

$$f(A - S) = f(A) - f(S).$$