Math 8, Summer 2012 Exam 1

Name Perm No.

Short Ans.	
1	
2	
3	
Total	

Directions:

1. Each problem is graded out of 4 points.
2. Each short answer question is worth 1 point.
3. You're only allowed a writing instrument and your wits.
4. Proofs should be clean, to the point, and written in proper English sentences.

Short Answer

1. Given sets A and B, give a precise definition of $A \subseteq B$.
2. Let $f: A \rightarrow B$ be a function and $S \subseteq B$. Give a precise definition of $f^{-1}(S)$.
3. A sequence of continuous functions $f_{1}, f_{2}, f_{3} \ldots$, each mapping from $[0,1]$ into \mathbb{R}, is said to converge uniformly if and only if:

For every $\epsilon>0$ there exists $N \in \mathbb{N}$ so that for all integers $n, m \geq N$ and $x \in[0,1]$ we have $\left|f_{n}(x)-f_{m}(x)\right|<\epsilon$.

Give a precise statement of what it means for such a sequence not to converge uniformly.
4. Precisely define what it means for the function $f: A \rightarrow B$ to be surjective.
5. Given a collection of sets $\left\{A_{i}: i \in I\right\}$, precisely define $\bigcup_{i \in I} A_{i}$.
6. Which of these is not bijective?
(a) The identity map $\mathbb{Z} \rightarrow \mathbb{Z}$
(b) A 90° rotation of \mathbb{R}^{2} about the origin
(c) A translation of \mathbb{R}^{3} by 3 units along an axis
(d) The inclusion map $\mathbb{N} \hookrightarrow \mathbb{Z}$
(e) None of the above
7. Given sets A and B, precisely define $A \times B$.
8. Give a precise definition of what it means for a real number x to be rational.

Problems

1. Let a and b be integers. Prove that $a+b$ is even if and only if $a^{2}+b^{2}$ is even. Hint: There is a nice proof using $(a+b)^{2}$.
2. Let A and B be sets with $\mathcal{P}(A) \cup \mathcal{P}(B)=\mathcal{P}(A \cup B)$. Prove that either $A \subseteq B$ or $B \subseteq A$.
3. Suppose that $f: A \rightarrow B$ is an injective function and $S \subseteq A$. Prove that

$$
f(A-S)=f(A)-f(S)
$$

